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Generalised Glauber states and the T, 8 ( E ,  0 T ~ ~ )  Jahn-Teller 
effect 

C C Chancey 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX 1 3NP, 
UK 

Received 12 December 1986 

Abstract. The octahedral Jahn-Teller system T, @ (  E ~ @  T ~ ~ )  is studied using generalised 
Glauber states which are eigenstates of the system in the strong-coupling limit. It is shown 
that these states become, when limited to a total angular momentum of one, eigenstates 
in the weak-coupling limit. The lower-branch zero-phonon state is studied using these 
states and expressions as functions of coupling strength are obtained for the energy and 
Ham reduction factors. The results compare well with the available numerical calculations. 

1. Introduction 

The octahedral Jahn-Teller system T , @ ( E ~ @ T ~ ~ ) ,  in which an electronic state TI is 
linearly coupled to and T~~ vibrational modes, has been the object of theoretical 
research for twenty years. The early work is due to O’Brien (1969) who calculated the 
principal features of the ground state for strong coupling. O’Brien (1971, 1976) and 
Romestain and Merle d’AubignC (1971) further developed the theory with particular 
reference to a p electron trapped in an oxygen vacancy in CaO, where the conditions 
of equal coupling and equal frequencies seem to be well fulfilled (Merle d’AubignC 
and Roussel 1971, Duran e? a1 1972). Judd (1974) and Judd and Vogel (1975) have 
explored the strong-coupling limit using Glauber states and the ligand trajectories have 
been determined (Judd 1978, 1984). 

The similarity between the TI 0 ( E ~  0 T ~ , )  system and a displaced three-dimensional 
harmonic oscillator was exploited by Chancey and Judd (1983), who thereby obtained 
an approximate analytical solution applicable at all coupling strengths. Yet, because 
their perturbative treatment achieved its greatest accuracy in representing the higher- 
energy levels, the ground state was modelled only moderately well. The recent success- 
ful application of generalised Glauber states to the E 0 E Jahn-Teller problem (Chancey 
1984) has stimulated the present attempt to extend the Glauber state formulation to 
the more complex TI 0 ( sg 0 T ~ ~ )  system. In doing this, we hope to develop approximate 
analytical expressions for the zero-phonon state energy and the Ham reduction factors 
which are accurate over the entire range of coupling strengths. 

2. Hamiltonian 

In terms of a characteristic frequency U, and assuming both the .zg and T~~ modes to 
have identical couplings to the TI state, we can write the Hamiltonian in second 
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quantisation as H = H,+ H, where 

H -I - , h w ( a +  - U + a - a t )  H I =  T ‘ ” .  ( u ’ + u ) .  (1) 

The second-rank spherical tensor U ’ ,  with components U:  ( m  = -2, - 1 , O ,  1,2), creates 
the five states of the d boson; a is its annihilation counterpart. The tensor T‘” acts 
only in the space of the electronic triplet and its magnitude determines the strength 
of the interaction. The reduced matrix element of T‘” can be related to K ,  the coupling 
strength parameter used in this work, and to the S and k used by O’Brien (1971), 
through the equations 

(2)  

Our K is identical to the K defined by Chancey and Judd (1983) in their study of the 
TI 0 ( E ~  0 T ~ ~ )  system. 

(2/15)1’2(pll T‘”llp) = (2/15)1’2k=d?= K .  

3. Generalised Glauber states 

In their study of the strong-coupling limit, Judd and Vogel (1975) defined states which 
were generalisations of the coherent states first used by Glauber (1963) in connectioin 
with the radiation field. Using equation (9) of their paper, we begin by writing 
generalised Glauber states for the three energy branches (labelled by r = 0, * l ) :  

Ir, h p v , J M ) =  D!:”.  ( ~ ) D ~ ~ ( P ~ - K ) ’ ( P : ) ~ ( P I Z ) ”  exp(KP:)lo)da. (3) i 
In these states, J is the total angular momentum (with magnetic quantum number M ) ,  
D!;’) . Ip) represents the static JT states (O’Brien 1969), A, p and v are occupation 
numbers for the quadrupole oscillations of the complex and K is the coupling strength 
as given in (2).  The subscript dot merely indicates a blank space for the unspecified 
components of the first rank 1 that are to be combined with appropriate components 
of Ip) to form a scalar product. The integration is over the usual Euler angles, 
represented here by = (4, 8, 7 ) .  The creation operators used above are defined in 
terms of the components of ut through the relation 

Pk = [D!?’ * ut]/J5 (4) 
where D‘22’(R) is a double tensor as defined by Judd (1975). The three orbital states 
of the p electron {Ir), with r = 0, *l} are denoted by the vector ket Ip) and have the 
usual forms in terms of the Cartesian components: 10) = lz)  and 1 * 1) = (Ix) * ily))/J2. 

To better understand (3) ,  consider a state in which the electronic and phonon 
coordinates are uncoupled: 

Ir; A ~ V )  = Ir)(u~-K)‘(U:)~(Ur,)” exp(KuA))oj. ( 5 )  
As expressed, lr; Apv) is the product of a p orbital state and a displaced harmonic 
oscillator state. If A and E are the angular momentum operators for the phonon and 
electronic spaces, respectively, then we can write a total angular momentum operator 
J = A + E and with it define a rotation operator D, (a): 

( 6 )  D,(n)  = exp(-i$J,) exp(-iBJ,,) exp(-iyJz) 

which rotates states in both spaces. Allowing D,(a)  to operate on ( 5 )  we obtain 

D,(a)Ir;  Apv) = D!:‘) I r ) ( p ~ - ~ ) * ( P : ) ~ ( p l ~ ) ”  exp(KPi)lO). 
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Thus 

(r,Ap#,JM)=(-1)’+N(2J+1)”2 9d’M-N(fl)*D,(Cl)lr; A p v ) d n  (7)  

where we have written the double tensor component as a rotation matrix element. Since 
5 

O,(n)=C C IJA>(JAIO,(n)IJB)(J~I 
A B  

1 IJA)9iB(R)(JBI 
A B  

we are able, after pulling Ir; A p u )  outside the integral, to reduce (7) to an  integration 
over two rotation matrices (see, for example, Judd 1975) and  thus obtain 

(8) ( r ,  Apv, J M )  = (-1)””8r21JM)(J, --NIr; Apv) / (2J+ l)”2.  

The strong-coupling states Ir, Apu, J M )  are thus seen to be total angular momentum 
projections from the uncoupled states I r ;  Apv). That the strong-coupling solutions 
exhibit J as a good quantum number is a reminder of the SO(3) symmetry first uncovered 
by O’Brien (1969) in her study of the strong-coupling limit. 

If we denote 10, Apu, J M )  with K set to zero by 10, Apu, JM), ,  we can then express 
the behaviour of this state at  the zero-coupling limit by 

HOlO, hpv,JM)o= h w [ A + p +  v+(J-1)+;]10, Apu,JM)o. 

Thus, for J equal to one, the energy boundary condition at K = O  is met, in analogy 
with a similar condition in E O &  where U is limited to (Chancey 1984). The 
convenience of this restriction ( J  set to one) is underscored when we reflect that only 
states with a J of one are accessible from the ground state by electric-dipole radiation. 

A useful simplification occurs when we expand the exponential and  binomial terms 
in (3) in powers of K :  

where one sum has been rewritten as a generalised Laguerre polynomial. 
In this paper, we shall limit our study to the zero-phonon state 10,000, 10). (The 

freedom to set M = 0, as we have done, follows from the fact that the Hamiltonian 
(1) leaves M unshifted; we have chosen zero for convenience.) Using (9), we can write 

K <  
10,000, 10) = c - 10, LOO, lo), 

5 5 !  
where 10, LOO,  lo), is given by (3), setting K = O .  

4. Orthogonality 

In determining the zero-phonon energy, we shall carry out a first-order perturbation 
calculation using the standard theory for orthogonal eigenfunctions. The applicability 
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of this procedure to our case rests on the orthogonality between (0,000, 10) and the 
remaining generalised Glauber states. While such orthogonality is no surprise in the 
strong-coupling limit, it is remarkable that these states remain orthogonal, or nearly 
so, for weak and intermediate couplings. 

Our decision to set M = O  allows us, on the lowest energy branch, to fix p = v 
(Judd and Vogel 1975) and we therefore begin by considering the overlap 

This can be simplified by writing the double tensor components as rotation matrix 
elements and then applying the results given in appendix 1. Doing this gives 

o(0, 5’00, 1010, SPP, 10)o 

=96(5’, 5+2P)5‘! COS(@) c o ~ ( e f ) [ P , ( c o ~  a ) ] <  

) &  (13) 
1 

252 

si 
4J3 

x (1/5)& (1 -7 P2(cos a)+-  P4(cos a )  dfl  d o ’  

where cos(a) = cos( 0)  cos( e’) +sin( e )  sin( e’) cos( 4 - 4’) and Pi(cos a )  is a Legendre 
polynomial. The weighting of the P,(cos a )  term shows that we may drop this term 
without seriously affecting accuracy. We are left with integrals involving powers of 
P,(cos a ) :  

o(0, C’OO, 1010, SPP, 10)o 

= (9/4)6(5’, 5 + 2 ~ ) 5 ’ ! ( 1 / 5 ) ~  c ($)(-4fi/7)‘ 

x cos(a) sin(28) sin(2e’)(P2(cos a))‘” d e  d e ’ d 4  d#J’  

These integrals are evaluated in appendix 2, with the result that 

0(0,5’00,1010, lPP,  1O)o 

= ( 4 ~ ) ~ 6 ( 5 ’ ,  5 + 2 ~ ) 5 ’ ! ( 1 / 5 ) *  ( $) (-4fi/7)‘(3/2)‘+‘ 
7 

The sums over s and t are very nearly binomial expansions and a straightforward 
consideration shows that the overlap decreases rapidly for values of p greater than 
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zero. To within a reasonable approximation this fact, together with the delta function 
in (13), allows us to write 

o(0, 5'00,10l00, 5 w ,  10)o = S(C', O S ( / - &  0) o(0, 500,10l0,500, 10)o (15) 

in which 

This result combines with (1 1) to give 

(0,000,1010, APP, 10) 

= (477) 'S(~ ,  0) K ~ ~ - ~ L $ - ~ ( K ~ ) ( ~ / ~ ) '  ( 5 ) (-1/3)' 
i 5 .  , t ( 25 -2 r+3) '  

The near-orthogonality of these states is seen when we replace (25 -2 t+3)  with 
(25-2t+2)-an accurate approximation within (17). The sum in (17) is now cast in 
a form equivalent to those sums dealt with by Chancey and Judd (1983) in their study 
of T , O ( E ~ O T ~ ~ ) .  (We quote the necessary sum at the end of appendix 2, (A2.6).) 
Applying (A2.6), we have 

(0,000, 1010, AILCL, 10) 

= (1/3)(4~) 'A ! eXp(2K2)K2-"(-l)A 

where f f l ( z )  is the rounded step function of Barentzen et a1 (1981): 

The first term within the brackets behaves like S(0, A )  and dominates to give the 

(18) 

required result, 

(0,000, 1010, APF, 10)- S ( P ,  O)S(A, 0) 

within the normalisation. 

5. The zero-phonon energy 

We are now prepared to calculate the approximate energy of the zero-phonon state 
on the lowest branch. Using standard techniques, a first approximation for the energy 
of the state 10,000, 10) is given by 

E o = ( O , O O O ,  10(H~O,OOO, 10)/(0,000, 10~0,000,10). (19) 
To evaluate the numerator, we need the matrix elements (0,000, 101H,lO, 000, 10) and 
(0,000, 10/HllO, 000,lO). We begin by finding the second of these, using a techniuqe 
introduced by Judd (1976) in connection with the zero-phonon state of EO&. 

Starting with HI as given in ( l ) ,  we can expand it as follows: 

H , / K ~ u  = €@(a:+  a,) + € , (U :  + a,) + T,(u:+ a,)+ T ~ ( U : +  u , ~ )  + T,(u:+ a,) (20) 
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where the electronic operators are as given in O'Brien (1969), with x = 6, y = 7 and 
z 5. With HI in this form, it is easy to check that 

(T'" - a) l z )  exp(Ka:)(O) = - K ~ ~ W ~ Z )  exp(Kal)lO). (21) 

Recalling that lz)= Ir) for r = 0 and noting that a: 3 a:, we see that lz) exp(ka;)lO) is 
merely the state 10; 000) as defined in ( 5 ) .  In  fact, 10; 000) is one of the infinity of 
solutions to the static TI 0 ( E ~  0 T ~ ~ )  problem. Other static solutions result when we 
apply D,(SZ) to 10; 000): as the Euler triad il varies over its full domain, D,(sZ)lO; 000) 
varies to encompass every static solution eigenvector. The state 10; 000), corresponding 
to the a =  (0, 0,O) triad, maps to the north pole ( 0  = 0) on the potential minimum 
sphere of O'Brien (1969, 1971). Thus 

( T ' ~ '  - a ) ~ , ( a ) l o ;  000) = - K * ~ w D ~ ( ~ ) [ o ;  000) 

and we see that 

(T"' * U)10,000, l o ) =  -K2hWI0, 000, 10) (22) 

since the generalised Glauber states, as defined in (3), are formed from linear combina- 
tions of the rotated static states. 

Since the adjoints of the Glauber states are eigenbras of T"' a', the zero-phonon 
matrix element of HI can be calculated by allowing the two terms that comprise H, 
to act in opposite senses: T"' a to the right and T"' at  to the left. Doing this, we 
see that 

(23) 

To find the matrix element (0,000, 10IHolO, 000, lo), we need only note that 
hw(5+5/2) 10, 500, lo), and then apply equations (10) and (16). 

(0, 000, 101H110, 000, lo)/((), 000, 1010, 000, 10) = -2K'hU. 

HoIO, 500, 
Doing this, 

(0,000, lOlH,IO, 000, 10)/hw 

Using (10) and (16) to find (0,000,10/0,000, lo), (23) and (24) combine to give a 
compact expression for the energy 

d 
Eo/hw =$-2S+S-(ln(O,000, d S  1010,000, 10)) ( 2 5 )  

where S = K'. The close analogy between (25) and the similar expression obtained for 
the simpler E 0 E system (equation (21), Chancey 1984) using the Glauber state analysis 
is striking. As we would hope, Eo/hw takes the correct asymptotic values at the two 
coupling limits: 

asK+O I 

E , / h w + { ,  2 - K  ' 2 asK+CO. 

Figure 1 plots the zero-phonon energy as given in (25) and compares it with the 
numerical calculations of O'Brien (1971). 
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k 

Figure 1. The energy E, of the zero-phonon state of the lowest energy branch plotted 
relative to the baseline that forms its asymptote when K + 03. Here k = ( 1 5 / 2 ) ” 2 ~ ,  where 
k is the coupling parameter of O’Bnen (1971). The broken curve shows the numerical 
values; the full curve represents our approximate analytical solution. 

6. Ham reduction factors 

As a test of our approximate eigenstate 10,000, lo), we can calculate the Ham reduction 
factors K ( E )  and K ( T , ) .  These were first studied by Ham (1968), who showed that 
matrix elements of electronic operators are reduced in magnitude when eigenstates 
involve the coupling of electronic states to phonon states. We begin by calculating 
K ( E ) .  Translating the definition given by O’Brien (1969,1971) into our notation, 
K ( E )  takes the form 

K ( E )  = -(O, 000, l O ( E @ l O ,  000, 10)/(0,000, 10~0,000, 10) (26) 

where 

within the electronic triplet basis {I + l), I - l), IO)}. In calculating (26), we need the 10) 
component of the rotated electronic state D!:’) Ir). This is simply Do, and is equal 
to cos 8. Applying equations ( 3 )  and ( lo) ,  we obtain integrals that are solved in 
appendix 2. Thus for the zero-phonon state, K ( E )  takes the form 

F ( K 2 )  

(0,000, 10~0,000, 10) 
K ( E ) =  (0.4)+(0.6) 

where 

K ( E )  is plotted in figure 2 and is compared against the numerically obtained graph 
of O’Brien (1971). The behaviour of (28) obeys the correct asymptotic limits, namely 

asK-+O 
as K - + C O .  

K ( E ) =  

A second Ham factor, K (  TI), represents the reduction undergone by an operator 
whose components transform according to the irreducible representation T, of 0. It 
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0 2 4 6 
k 

Figure 2. The numerical and analytical values of the Ham reduction factors K (  TI) and 
K ( E ) .  They are plotted against the coupling parameter k = ( 1 5 / 2 ) " 2 ~  (O'Brien 1971). 
The full curves show the analytical values; the broken curves show the numerical ones. 

is related to K ( E )  by the equation K ( E )  - ( 0 . 6 ) K (  T , )  = (0.4). For completeness it is 
also plotted in figure 2. 

7. Concluding remarks 

In our analysis we have obtained approximate analytical expressions for the zero- 
phonon eigenstate, energy and Ham factors which are valid over the entire range of 
linear coupling. In analogy with the case for E 0 E ,  the success of our analysis here 
rests with the fact that we have studied a state whose zero-coupling behaviour involves 
only three of the five phonon modes: the m = 2, 0 and 2 components of the d boson. 
As Judd and Vogel (1975) showed, it is these three vibrational modes, as opposed to 
the rotational modes ( m  = * l) ,  which describe the three oscillatory degrees of freedom 
in the strong-coupling limit. 

Though we have dealt only with the zero-phonon state, the remaining J = 1 states 
also have the correct asymptotic behaviour at K = 0 and K = 00 and may thus allow an 
extension of the present analysis. An extension of the matrix relations to include the 
overlap ,(O, l 'p. 'p.' ,  1010, lpp,  lo), and the element ,(O, l 'p. 'p' ,  101H,10, Spp, lo), should 
be sufficient to achieve this. Whether such an analysis would demonstrate an improve- 
ment in accuracy with increasing energy-as was achieved in the E 0 E Glabuer state 
analysis- is an interesting question which must await future research. As a final point, 
we note that the analysis we have outlined should be equally suited to dealing with 
the upper two energy branches ( r  = i l ) .  
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Appendix 1. Manipulations involving the rotated phonon operators 

We begin with the definitions 

and 

Using the relation D!&:”(O) = (-1)”’(2J + l ) ” 2 9 i - h ( 0 ) * ,  and the commutation rela- 
tions for the uq and a; operators we find that 

( A l . l )  

(A1.2) 

for all m and n. Using (Al.1) and (A1.2), we now reduce the overlap 

[ P m ( R ‘ ) ,  P n ( n ) I  = [pln(ar), P L ( ~ ) I  = O  

[@,(a’), PL(Wl= (-l)n+m e 9;-m(a’)9;-n(a)* 
P 

~ ~ l ~ ~ o ~ ~ ’ ~ l i ’ r p ~ ~ n ~ l “ [ P : ( n ~ l ” [ p T r ( n ~ l ” l ~ ~  to 

(A1.3) 

We shall consider the 5 term separately from the two p terms. As to the first, 

4 n  
9af,(R‘)9af0(R)* =-E Y f ( a ’ )  Yf(R)* = P2 (cos a) (A1.4) 

r 5 r  

where cos( a )  = cos( e )  cos( e’) + sin( 0)  sin( e’) cos( 4 - +’), R = (4, 0, 4‘). Thus, the first 
term reudces to [P2(cos a)]‘. We combine the p terms in (A1.3) to obtain 

c c 9~o(a‘)9a2,,(n’)~~~(a)*~a2,-2(a)* 
P 4  

The standard relation (see, for example, Judd 1975) 

(A1.5) 

allows us to write (A1.5) as 

(A1.6) 

where we have used the symmetries of the Clebsch-Gordan coupling coefficients to 
set c ’ =  d ‘ =  0. We now sum over p and q using the unitary properties of the coupling 
coefficients to give 

( 2 0 , 2 0 ) c 0 ) ( 2 2 , 2 - 2 ~ c o ) 9 ~ ~ ( ~ ’ ) ~ , c , ( ~ ) * .  (A1.7) 

We now sum over c, applying the same type of relation as was used in (A1.4), to achieve 

c c  

(20,20(C0)(22, 2 -2 (co )Pc (cos  a ) .  
C 
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Writing out this sum gives us 
1 

5 (1  -$ P,(COS a)+- 252 P,(cos a) 

1 
252 

P,(cos a)+- P,(cos a) 

Appendix 2. Overlap integrals 

We start with the overlap integral 5 5  COS(^)[ P,(COS a)]'+' cos( e)  cos( e') sin( e )  sin( e') d e  de'  d 4  d 4 '  

(A1.8) 

(A2.1) 

where Since P,(cos a )  = 
 CO COS ~ ~ ) ~ - 1 ] / 2 ,  we can expand the [+s power in a binomial expansion to give 
(writing 5 + s 6)  

cos( a) = cos( e )  cos( e') +sin( e )  sin( e') cos(4 - 4'). 

x (sin( e )  sin( e'))"'(cos(4 - 4'))r dB de '  d 4  d 4 '  

(A2.2) 
We will first perform the integration over 4', keeping 4 constant. Let @ = 4'- 4 so 
that d@ = d4 ' .  The integrations over 4 and 4' then become 

d+ j::-" (cos @ ) r  d@. 

Using Leibniz's rule for the derivative of an integral (see, for example, Hildebrand 
1976), we discover that 

; 5::+ (COS 
d@ = 0. 

We are thus free to set the value of 4. Let 4 = TT, so as to give 

2 d 4  1; (cos d@. 

Applying 3.621.3 of Gradshteyn and Ryzhik (1980), we get as the final result 

(A2.3) r even 

r odd. 
(COS(+ - 4'))' d 4  d 4 ' =  
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The integral over B now becomes 

(sin( de. 

We apply 2.512.4 of Gradshteyn and Ryzhik (1980) to find that (A2.1) now takes the 
form 

(COS(~))26-21+2-2r 

! ! (26-21-2r+l)!!  
(2r)  ! ! (2r) ! ! 

(2(2r) 
(26 -2 t  +3)!! (-1/3)! 

This sum over r is a special case of the more general sum 

(2s+c)!!  - ( 2 N + c + 2 ) ! !  c 
r - 0  (2s)!! (c+2)(2N)!!  

- (A2.4) 

which may be proved using induction. Applying (A2.4) we arrive at a final form for 
(A2.1): 

1 6 ~ '  (-1/3Ir 
- (3/2)"' ('+') 

3 , t ( 2 1 + 2 ~ - 2 t + 3 ) '  

In evaluating (17), we have made use of the following 

(A2.5) 

sum: 

(A2.6) 

where 

is the rounded step function of Barentzen et a1 (1981). 

References 

Barentzen H, Olbrich G and O'Brien M C M 1981 J.  Phys. A :  Math. Gen. 14 111-24 
Chancey C C 1984 J.  Phys. A :  Math. Gen. 17 3183-94 
Chancey C C and Judd B R 1983 J.  Phys. A :  Math. Gen. 16 875-90 
Duran J,  Merle d'Aubign6 Y and Romestain R 1972 J.  Phys. C: Solid Sfate  Phys. 5 2225-45 
Glauber R J 1963 Phys. Rev. 131 2766-88 
Gradshteyn I S and Ryzhik I M 1980 Table of Infegrals, Series and Products (New York: Academic) 
Ham F S 1968 Phys. Rev. 166 307-21 
Hildebrand F B 1976 Advanced Calculus for Applications (Englewood Cliffs, NJ: Prentice-Hall) 87.9 
Judd B R 1974 Can. J .  Phys. 52 999-1044 
- 1975 Angular Momenrum n e o r y f o r  Diatomic Molecules (New York: Academic) ch 1 
- 1976 Colloq. I n t .  du CNRS:  Spectrometrie des Elements lourds dans les Solides, N o  255 (Lyon)  



2764 C C Chancey 

Judd B R 1978 J. Chem. Phys. 68 5643-6 
- 1984 Advances in Chemical Physics vol 57, ed S A Rice and I Prigogine i New York: Wiley) pp 247-309 
Judd B R and Vogel E E 1975 Phys. Rev. B 11 2427-35 
Merle d’Aubigne Y and Roussel A 1971 Phys. Reo. B 3 1421-7 
O’Brien M C M 1969 Phvs. Reo. 187 407-18 
- 1971 J .  Phys. C: Solid Srate Phys. 4 2524-36 
- 1976 J.  Phys. C: Solid Srate Phys. 9 3153-64 
Romestain R and Merle d’Aubigni Y 1971 Phys. Rev. B 4 4611-6 


